Particle physics probes the basic building blocks of matter and their interactions, which determine the structure and properties of the extreme diversity of matter in the universe. The web portal makes the fascinating research understandable to an interested public.more

Image: ESO, R. Fosburymore

Surprising Signal in Dark Matter Detector

a press release from the University of Zurich

When analyzing data from the XENON1T detector for dark matter, a signal excess was observed. The UZH researchers do not yet know for sure where this unexpected signal comes from. They say the origins could be relatively banal, but they could also indicate the existence of new particles or hitherto unknown properties of neutrinos.

XENON1T
Image: zVg

Since the end of 2018, the XENON1T detector in the underground laboratory at Gran Sasso, part of the National Institute for Nuclear Physics in Italy, has been searching for particles of dark matter, the material that makes up 85 percent of the matter in the universe. The world’s most sensitive detector has not yet found any particles of dark matter, but some unusual events have been observed. If a particle flies through the liquefied xenon, it may collide with the xenon atoms, thereby triggering weak light signals and hitting electrons from the affected xenon atom. When comparing the XENON1T data with the expected 232 events of known particles, however, the researchers found a surprising excess of 53 events.

more details in: link

Categories

  • Particle Physics

Contact

Swiss Institute of Particle Physics (CHIPP)
c/o Prof. Dr. Ben Kilminster
UZH
Department of Physics
36-J-50
Winterthurerstrasse 190
8057 Zürich
Switzerland